DIRECTIONS: Write in exponential form.

1.
$$\sqrt{a^{-2}b^{3}}$$

 $\frac{b^{3/2}}{a}$
2. $\sqrt[3]{x^{6}y^{-4}}$
3. $(\sqrt{a^{-2}b})^{5}$
 $\frac{b^{5/2}}{a^{5}}$
4. $\sqrt[3]{8b^{6}c^{-4}}$
 $\frac{2b^{2}}{c^{4/3}}$
5. $\sqrt[4]{\frac{(16^{3})(a^{-2})}{b^{6}}}$
6. $\frac{1}{\sqrt[4]{p^{4}q^{-8}}}$
 $\frac{q^{2}}{p}$

DIRECTIONS: Express in simplest radical form. In #8-12, you must make the bases be the same.

7. $(\sqrt{8})(\sqrt[6]{8})$ 9. $\frac{\sqrt[5]{27^3}}{\sqrt[5]{9^2}}$ 8. $\frac{\sqrt[3]{4}}{\sqrt[6]{2}}$ $\sqrt{2}$ 3 **10.** $\sqrt[6]{8^3} \div \sqrt[6]{4^2}$ **12.** $\sqrt[4]{128} \cdot \sqrt[8]{256}$ **11.** $\sqrt[4]{27} \bullet \sqrt[8]{9}$ √32 $4\sqrt[4]{8}$ If you have $2^{5/6}$, If you have $2^{11/4}$, it $= 2^{8/4} * 2^{3/4}$ 2 doesn't have a 6th root, so take care of $2^5 = 32$.

<u>DIRECTIONS</u>: Simplify each expression. Give answers in exponential form.

13.
$$\sqrt[3]{a^2} \cdot \sqrt[3]{a^4}$$

 a^2
14. $\sqrt[4]{x} \cdot \sqrt[6]{x} \div \sqrt[3]{x}$
 $x^{1/12}$
15. $((b^{\frac{1}{2}})^{\frac{-2}{3}})^{\frac{3}{4}}$
 $1^{\frac{1}{b^{1/4}}}$
16. $a^{\frac{1}{2}}(a^{\frac{3}{2}}-2a^{\frac{1}{2}})$
 a^2-2a